Odd planet, so far from its star

GU Psc b, a gas giant, has been added to the list of exoplanets discovered through direct imaging.
By and | Published: May 14, 2014 | Last updated on May 18, 2023
Planet GU Psc b
The planet GU Psc b and its star GU Psc composed of visible and infrared images from the Gemini South telescope and an infrared image from the CFHT. Because infrared light is invisible to the naked eye, astronomers use a color code in which infrared light is represented by the color red. GU Psc b is brighter in infrared than in other filters, which is why it appears red in this image.
An international team led by University of Montreal researchers has discovered and photographed a new planet 155 light-years from our solar system.

A gas giant has been added to the short list of exoplanets discovered through direct imaging. It is located around GU Psc, a star three times less massive than the Sun and located in the constellation Pisces. The international research team, led by Marie-Ève Naud from the University of Montreal, was able to find this planet by combining observations from the Gemini Observatory, the Observatoire Mont-Mégantic (OMM), the Canada-France-Hawaii Telescope (CFHT), and the W. M. Keck Observatory.

A distant planet that can be studied in detail
GU Psc b is around 2,000 times the Earth-Sun distance from its star, a record among exoplanets. Given this distance, it takes approximately 80,000 Earth years for GU Psc b to make a complete orbit around its star! The researchers also took advantage of the large distance between the planet and its star to obtain images. By comparing images obtained in different wavelengths — colors — from the OMM and CFHT, they were able to correctly detect the planet.

“Planets are much brighter when viewed in infrared rather than visible light because their surface temperature is lower compared to other stars,” said Naud. “This allowed us to identify GU Psc b.”

Knowing where to look
The researchers were looking around GU Psc because the star had just been identified as a member of the young star group AB Doradus. Young stars — only 100 million years old — are prime targets for planetary detection through imaging because the planets around them are still cooling and are therefore brighter. This does not mean that planets similar to GU Psc b exist in large numbers, as noted by Étiene Artigau from the University of Montreal: “We observed more than 90 stars and found only one planet, so this is truly an astronomical oddity!”

Observing a planet does not directly allow determining its mass. Instead, researchers use theoretical models of planetary evolution to determine its characteristics. The light spectrum of GU Psc b obtained from the Gemini North Telescope in Hawaii was compared to such models to show that it has a temperature of around 1500° Fahrenheit (800° Celsius). Knowing the age of GU Psc due to its location in AB Doradus, the team was able to determine the planet’s mass, which is 9–13 times that of Jupiter.

In the coming years, the astrophysicists hope to detect planets that are similar to GU Psc but much closer to their stars, thanks, among other things, to new instruments such as the Gemini Planet Imager (GPI) recently installed on the Gemini South Telescope in Chile. The proximity of these planets to their stars will make them much more difficult to observe. GU Psc b is therefore a model for better understanding these objects.

“GU Psc b is a true gift of nature. The large distance that separates it from its star allows it to be studied in depth with a variety of instruments, which will provide a better understanding of giant exoplanets in general,” said René Doyon from the University of Montreal.

The team has started a project to observe several hundred stars and detect planets lighter than GU Psc b with similar orbits. The discovery of GU Psc, a rare object indeed, raises awareness of the significant distance that can exist between planets and their stars, opening the possibility of searching for planets with powerful infrared cameras using much smaller telescopes such as the one at the Observatory of Mont-Mégantic. The researchers also hope to learn more about the abundance of such objects in the next few years, in particular, using the Gemini Planet Imager, the CFHT’s SPIRou, and the James Webb Space Telescope’s FGS/NIRISS.