Holiday night-sky targets
An easy catch
This week’s naked-eye object is an asterism all beginning observers should be familiar with: Orion’s Belt. As its name implies, these three stars mark the belt of Orion the Hunter, the winter sky’s brightest and best-known constellation. On Christmas night, the belt rises in the east around 5 p.m. local time. Give it a couple hours to rise high enough for you to easily locate it.
Once you find the belt, use it as a pointer. Draw a line up from the belt until you come to a V-shaped group of stars called the Hyades. This V, which contains the bright star Aldebaran, marks the head of Taurus the Bull. Continue the line upward, and you’ll find the Pleiades star cluster, also known as M45.
Extend a line downward from the belt, and you’ll find the night sky’s brightest star, Sirius (Alpha [α] Canis Majoris), the luminary in the constellation Canis Major the Large Dog.
A twin cluster
This week’s small telescope target is open cluster M35 in Gemini the Twins. Actually, under a dark sky, most people can spot M35 as a fuzzy patch without optical aid. But it looks best through a telescope.
M35 lies 2.3° northwest of magnitude 3.3 Eta (η) Geminorum. This terrific cluster contains dozens of stars brighter than 10th magnitude. A 6-inch telescope will reveal more than 150 within M35’s central 20′. In this region, look for a string of stars some 10′ long shaped like a saxophone.
Through larger telescopes, look for NGC 2158, a fainter open cluster in the same field of view. Seeing NGC 2158 isn’t difficult, but resolving its stars requires a larger scope and high magnification.
Merry Christmas
I chose this week’s deep-sky object for its seasonal name. The Christmas Tree Cluster, also known as NGC 2264, lies in the faint constellation Monoceros. At magnitude 3.9, this grouping of stars is easily bright enough for you to spot with your naked eyes, albeit as an indistinct fuzzball.
At a magnification of 50x, you’ll see a dozen or so stars to the east and west of the magnitude 4.7 star 15 Monocerotis. This line forms the half-degree-long base of the Christmas tree. Its top points to the south.
Although they form the tree’s top, the southern stars don’t belong to this cluster, which lies approximately 2,500 light-years from Earth.
Through a 12-inch or larger telescope, you’ll see a bright strip of nebulosity some 5′ long. It seems to radiate westward from the brightest star. This gas belongs to the emission nebula Sharpless 2–273, which stretches an additional 2° to the west.
At the top of the Christmas Tree Cluster lies the Cone Nebula, an obscuring cloud of dust visible only through the largest amateur telescopes.
Podcast: Orion’s Belt, open cluster M35, and the Christmas Tree Cluster
Each week, Senior Editor Michael Bakich highlights three targets visible in the night sky. One object you can see without optical aid, one you can see with a small telescope, and one deep-sky object you can see with an 8-inch or larger telescope.
In this episode, he highlights Orion’s Belt, open cluster M35, and the Christmas Tree Cluster and explains how to see these objects your night sky. Listen to podcast.
StarDome
Astronomy.com’s interactive star chart, StarDome, displays an accurate map of your sky. It’ll help you locate this spectacle. Astronomy magazine subscribers have access to a slew of cool functions with StarDome PLUS.
Free weekly newsletter
Receive news, sky-event information, observing tips, and more from Astronomy‘s free weekly e-mail newsletter. Sign up today!
- December 19-26, 2008: The Kids, Pazmino’s Cluster, and the Flaming Star Nebula
- December 12-19, 2008: Hyades star cluster, open cluster M37, and NGC 1275
- December 5-12, 2008: Kemble’s Cascade, open cluster M36, and barred spiral galaxy NGC 925
- November 27-December 5, 2008: Venus and Jupiter, open cluster M38, and spiral galaxy NGC 1365
- November 21-28, 2008: Alpha Persei Association, open cluster M103, and spiral galaxy IC 342
NASA Moon mission completes thermal vacuum testing
NASA’s Lunar Reconnaissance Orbiter (LRO) successfully completed thermal vacuum testing, which simulates the extreme hot, cold, and airless conditions of space that LRO will experience after launch. This milestone concludes the orbiter’s environmental test program at NASA’s Goddard Space Flight Center in Greenbelt, Maryland.
The orbiter will carry seven instruments to provide scientists with detailed maps of the lunar surface and increase our understanding of the Moon’s topography, lighting conditions, mineralogical composition, and natural resources. NASA will use LRO data to select safe landing sites, determine locations for future outposts, and help mitigate radiation dangers to astronauts. The spacecraft will spend at least a year in a low polar orbit approximately 30 miles (48 kilometers) above the lunar surface while the instruments work together to collect detailed information about the Moon’s environment.
The thermal vacuum testing on the spacecraft took about 2 months. The orbiter, which was built at Goddard, was subjected to the extreme temperature cycles of the lunar environment as engineers conducted simulated flight operations.
“We have cooked LRO, frozen it, shaken it, and blasted it with electromagnetic waves, and still it operates,” said Dave Everett, LRO mission system engineer at Goddard. “We have performed more than 2,500 hours of powered testing since January, more than 600 of that in vacuum.”
The first two checks were the spin and vibration tests. The spin test determined the spacecraft’s center of gravity and measured characteristics of its rotation. During vibration testing, engineers checked the structural integrity of the spacecraft aboard a large shaking table that simulated the rigorous ride the orbiter will encounter during liftoff aboard an Atlas rocket.
Next, the orbiter was subjected to acoustics testing. The bagged spacecraft was placed near wall-sized speakers that simulate the noise-induced vibrations of launch. Following acoustics testing, LRO underwent tests that simulated the orbiter’s separation from the rocket during launch. The spacecraft also underwent electromagnetic compatibility testing to ensure internal and external electrical signals do not interfere with its critical functions.
“It was less than 1 year ago that LRO was a myriad collection of parts not yet delivered to our clean room,” said Craig Tooley, LRO project manager at Goddard. “This truly is a significant accomplishment – a hard earned milestone. It is a humbling and awe-inspiring experience to work with the LRO team.”
NASA will ship LRO to Kennedy Space Center in Florida in early 2009 to complete preparations for its April 24 launch aboard an Atlas V rocket. Accompanying the spacecraft will be the Lunar Crater Observation and Sensing Satellite, a mission that will impact the Moon’s surface in its search for water ice.
NRAO welcomes Taiwan as a new “North American” ALMA partner
Taiwanese astronomers will participate in the North American component of the international Atacama Large Millimeter/submillimeter Array (ALMA) partnership, alongside American and Canadian astronomers. The National Radio Astronomy Observatory (NRAO) announced a formal agreement stating that Taiwan’s efforts will be led by the Academia Sinica Institute of Astronomy and Astrophysics (ASIAA).
ALMA is among the most ambitious ground-based astronomical observatory in history. Currently under construction in Chile’s Atacama Desert at an altitude of 16,500 feet, it promises to revolutionize our understanding of the formation of planets, stars, and galaxies when it begins full science operations early in the next decade.
The agreement, signed by the Taipei Economic and Cultural Representative Office and the American Institute in Taiwan, provides for approximately $20 million in ALMA construction funding through the National Science Council, Taiwan’s equivalent to the United States National Science Foundation and Canada’s National Research Council, which have jointly funded North America’s existing contribution to the international ALMA project.
Activities under the agreement will include joint research projects, development projects, collaboration on construction, and support of observatory operations. Access to ALMA observing time will be shared, as will membership on advisory committees.
“Taiwan is a world-class center for submillimeter-wavelength astronomical research, and we’re delighted that the ALMA project and all its future users will benefit from the resources and expertise that Taiwan’s deepening participation brings to this great, global endeavor,” said Dr. Fred Lo, NRAO’s director.
This new agreement increases and diversifies Taiwan’s Academia Sinica investment in ALMA beyond the levels achieved through its participation in the East Asian component of the ALMA partnership, which is led by the National Astronomical Observatory of Japan.
The agreement mirrors previous ones affording Taiwan astronomers enhanced access to NRAO’s U.S.-based research facilities.
“ALMA will be one of the greatest ground-based observatories of the coming decade, and we look forward eagerly to working alongside our colleagues at the NRAO, and with the other ALMA partners, to make LAMA even more successful,” said Dr. Paul Ho, ASIAA’s director.
Scientists find “missing” mineral and clues to Mars mysteries
Researchers using a powerful instrument aboard NASA’s Mars Reconnaissance Orbiter have found a long-sought mineral on the martian surface and, with it, unexpected clues to the Red Planet’s watery past.
Surveying intact bedrock layers with the Compact Reconnaissance Imaging Spectrometer for Mars (CRISM), scientists found carbonate minerals, indicating that Mars had neutral to alkaline water when the minerals formed at these locations more than 3.6 billion years ago. Carbonates, which on Earth include limestone and chalk, dissolve quickly in acid. Therefore, their survival until today on Mars challenges suggestions that an exclusively acidic environment later dominated the planet. Instead, it indicates that different types of watery environments existed. The greater the variety of wet environments, the greater the chances one or more of them may have supported life.
“We’re excited to have finally found carbonate minerals because they provide more detail about conditions during specific periods of Mars’ history,” said Scott Murchie, principal investigator for the instrument at the Johns Hopkins University Applied Physics Laboratory in Laurel, Md.
The findings will appear in the December 19 issue of Science magazine and were announced December 18 at a briefing at the American Geophysical Union’s Fall Meeting in San Francisco.
Carbonate rocks are created when water and carbon dioxide interact with calcium, iron or magnesium in volcanic rocks. Carbon dioxide from the atmosphere becomes trapped within the rocks. If all of the carbon dioxide locked in Earth’s carbonates were released, our atmosphere would be thicker than that of Venus. Some researchers believe that a thick, carbon dioxide-rich atmosphere kept ancient Mars warm and kept water liquid on its surface long enough to have carved the valley systems observed today.
“The carbonates that CRISM has observed are regional rather than global in nature, and therefore, are too limited to account for enough carbon dioxide to form a thick atmosphere,” said Bethany Ehlmann, lead author of the article and a spectrometer team member from Brown University in Providence, Rhode Island.
“Although we have not found the types of carbonate deposits which might have trapped an ancient atmosphere,” Ehlmann said, “we have found evidence that not all of Mars experienced an intense, acidic weathering environment 3.5 billion years ago, as has been proposed. We’ve found at least one region that was potentially more hospitable to life.”
The article reports clearly defined carbonate exposures in bedrock layers surrounding the 925-mile (1,490-kilometer) diameter Isidis impact basin, which formed more than 3.6 billion years ago. The best-exposed rocks occur along a trough system called Nili Fossae, which is 414 miles (670 km) long, at the edge of the basin. The region has rocks enriched in olivine, a mineral that can react with water to form carbonate.
“This discovery of carbonates in an intact rock layer, in contact with clays, is an example of how joint observations by CRISM and the telescopic cameras on the Mars Reconnaissance Orbiter are revealing details of distinct environments on Mars,” said Sue Smrekar, deputy project scientist for the orbiter at NASA’s Jet Propulsion Laboratory in Pasadena, California.
NASA’s Phoenix Mars Lander discovered carbonates in soil samples. Researchers had previously found them in Martian meteorites that fell to Earth and in windblown Mars dust observed from orbit. However, the dust and soil could be mixtures from many areas, so the carbonates’ origins have been unclear. The latest observations indicate carbonates may have formed over extended periods on early Mars. They also point to specific locations where future rovers and landers could search for possible evidence of past life.
ALMA observatory gets first antenna
High in the Atacama region in northern Chile, one of the world’s most advanced telescopes passed a milestone recently. The first of many state-of-the-art antennae has been handed over to the Atacama Large Millimeter/submillimeter Array (ALMA) project. ALMA is under construction on the plateau of Chajnantor, at an altitude of 3 miles (5 kilometers). The telescope is being built by a global partnership and the European Southern Observatory (ESO) represents the European partner.
ALMA will initially comprise 66 high-precision antennae, with the option to expand in the future. There will be an array of fifty 40-foot (12m) antennae, acting together as a single giant telescope, and a compact array composed of 23-foot (7m) and 40-foot (12m) diameter antennae.
ALMA will help astronomers study the cool universe – the molecular gas and tiny dust grains from which stars, planetary systems, galaxies and even life are formed. ALMA will provide new insights into the formation of stars and planets, and will reveal distant galaxies in the early universe, which we see as they were more than 10 billion years ago.
The Mitsubishi Electric Corporation built the first 40-foot (12m) diameter antenna for the National Astronomical Observatory of Japan, one of the ALMA partners. North American and European antennae will join the first antenna shortly.
“Our Japanese colleagues have produced this state-of-the-art antenna to exacting specifications. We are very excited about the handover because now we can fully equip this antenna for scientific observations,” said Thijs de Graauw, ALMA director.
Antennae arriving at the ALMA site undergo a series of tests to ensure that they meet the strict requirements of the telescope. The antennae have surfaces accurate to less than the thickness of a human hair, and can be pointed precisely enough to pick out a golf ball at a distance of 9 miles (15 km).
“ALMA is very important to European astronomers and to ESO, because it allows us to look at the universe in a way that has never been possible before. It really marks the start of a new era in astronomy,” said Wolfgang Wild, the European ALMA project manager.
The observatory team now can proceed with integrating the rest of the components, including the sensitive receivers that will collect the faint cosmic signals from space.
The antennae are tested at the Operations Support Facility, at an altitude of 1.8 miles (2.9 km), before being moved to the plateau of Chajnantor at 3 miles (5 kilometers). The Operations Support Facility will also be the observatory’s control center.
ALMA is being built on the Chajnantor plateau, high in the Chilean Andes, because the site’s extreme dryness and altitude offer excellent conditions for observing the submillimeter-wavelength signals for which the telescope is designed.
In addition, Chajnantor’s wide plateau offers ample space for the construction of the antenna array, which is spread out and linked together over distances of more than 10 miles (16 km).
“The ALMA antennae must withstand the harsh conditions at Chajnantor with strong winds, cold temperatures and a thin atmosphere with half as much oxygen as at sea level. This forbidding environment also poses challenges for the workers building ALMA,” said de Graauw.
Each antenna weighs about 100 tons and can be moved to different positions to reconfigure the ALMA telescope.
Where did Venus’ water go?
Venus Express has made the first detection of an atmospheric loss process on Venus’ dayside. Last year the spacecraft revealed that most of the lost atmosphere escapes from the nightside. Together, these discoveries bring planetary scientists closer to understanding what happened to the water on Venus, which is suspected to have once been as abundant as on Earth.
The spacecraft’s magnetometer instrument (MAG) detected the unmistakable signature of hydrogen gas being stripped from the dayside. “This is a process that was believed to be happening at Venus, but this is the first time we measured it,” said Magda Delva, Austrian Academy of Sciences, Graz, who leads the investigation.
Thanks to its carefully chosen orbit, Venus Express is strategically positioned to investigate this process. The spacecraft travels in a highly elliptical path that sweeps over the poles of the planet.
Water is a key molecule on Earth because it makes life possible. With Earth and Venus approximately the same size and having formed at the same time, astronomers believe both planets likely began with similar amounts of the liquid. Today, however, the proportions on each planet are extremely different. Earth’s atmosphere and oceans contain 100,000 times the total amount of water on Venus. In spite of the low concentration of water on Venus, Delva and colleagues found that Venus’ dayside was losing some 2×1024 hydrogen nuclei, a constituent atom of the water molecule, every second.
Last year, the Analyzer of Space Plasma and Energetic Atoms (ASPERA) aboard Venus Express showed that there was a great loss of hydrogen and oxygen on the nightside. Roughly twice as many hydrogen atoms as oxygen atoms were escaping. Because water is made of two hydrogen atoms and one oxygen atom, the observed escape indicates that water is being broken up in the atmosphere of Venus.
The Sun not only emits light and heat into space, but it also constantly spews out solar wind, a stream of charged particles. This solar wind carries electrical and magnetic fields throughout the solar system and “blows” past the planets.
Unlike Earth, Venus does not generate a magnetic field. This is significant because Earth’s magnetic field protects its atmosphere from the solar wind. At Venus, however, the solar wind strikes the upper atmosphere and carries off particles into space. Planetary scientists think the planet has lost part of its water in this way over the 4½ thousand million years since the planet’s birth.
“We do see water escaping from the nightside. But the question remains: How much has been lost in the past in this way?” said Stas Barabash, Swedish Institute of Space Physics, Kiruna and Principal Investigator of ASPERA, who looked at nightside data.
The discovery takes scientists a step toward understanding the details, but it does not provide the last piece of the puzzle. To be certain that the hydrogen is coming from water, Delva and colleagues also must detect the loss of oxygen atoms on the dayside and verify that there are approximately half as many leaving Venus as hydrogen.
So far, this has not been possible. “I keep looking at the magnetometer data but so far I can’t see the signature of oxygen escaping on the dayside,” said Delva.
It also highlights a new mystery. “These results show that there could be at least twice as much hydrogen in the upper atmosphere of Venus than we thought,” said Delva. The detected hydrogen ions could exist in atmospheric regions high above the surface of the planet, but scientists don’t know the source of these regions.
So like a true lady, Venus still retains some of her mystery.
Hubble catches Jupiter’s largest moon going to the dark side
NASA’s Hubble Space Telescope caught Jupiter’s moon Ganymede playing a game of “peek-a-boo.” In this crisp Hubble image, Ganymede is about to duck behind the giant planet.
Ganymede completes an orbit around Jupiter every 7 days. Because Ganymede’s orbit is tilted nearly edge-on to Earth, observers routinely can see it passing in front of and disappearing behind its giant host, only to reemerge later.
Composed of rock and ice, Ganymede is the largest moon in our solar system. It is even larger than the planet Mercury. But Ganymede looks like a dirty snowball next to Jupiter, the largest planet in our solar system. Jupiter is so big that only part of its southern hemisphere can be seen in this image.
Hubble’s view is so sharp that astronomers can see features on Ganymede’s surface, most notably the white impact crater, Tros, and its system of rays — bright streaks of material blasted from the crater. Tros and its ray system are roughly the width of Arizona.
The image also shows Jupiter’s Great Red Spot, the large eye-shaped feature at upper left. A storm the size of two Earths, the Great Red Spot has been raging for more than 300 years. Hubble’s sharp view of the gas giant planet also reveals the texture of the clouds in the jovian atmosphere as well as various other storms and vortices.
Astronomers use these images to study Jupiter’s upper atmosphere. As Ganymede passes behind the giant planet, it reflects sunlight, which then passes through Jupiter’s atmosphere. Imprinted on that light is information about the gas giant’s atmosphere, which yields clues about the properties of Jupiter’s high-altitude haze above the cloud tops.
Water in the early universe
A research group led by graduate student Violette Impellizzeri from the Max Planck Institute for Radio Astronomy used the 328 foot (100m) Effelsberg radio telescope to detect water at the greatest distance from Earth so far. The water vapor was discovered in the quasar MG J0414+0534 at redshift 2.64, which corresponds to light travel time of 11.1 billion years, a time when the universe was only a fifth of the age it is today. The water vapor is thought to exist in clouds of dust and gas that feed the super-massive black hole at the center of the distant quasar. The detection was later confirmed by high-resolution interferometric observations with the Expanded Very Large Array (EVLA).
This discovery of water in the early universe was possible due to the chance alignment of a foreground galaxy and the distant quasar MG J0414+0534. The foreground galaxy acts like a cosmic telescope, magnifying and distorting the light from the quasar, and forms four distinct images of the quasar. Without this gravitational-lensing effect, 580 days of continuous observations with the 328 foot (100m) telescope would have been needed instead of the 14 hours used to make this remarkable discovery.
The Effelsberg radio telescope also detected water from MG J0414+0534. The object is within the right redshift interval to stretch the line emission of the water molecule from its original frequency of 22 GHz to 6 GHz and so within the tuning range of the 6 GHz receiver installed at the telescope.
“It is interesting that we found water in the first gravitationally magnified object we observed from the distant universe”, said co-author John McKean. “This suggests that water may be much more abundant in the early universe than first thought, and it can be used for further research into super-massive black holes and galaxy evolution at high redshift.”
The water emission was seen in the form of a maser, which is beamed radiation similar to a laser, but at microwaves. The signal corresponds to a luminosity of 10,000 times the luminosity of the Sun. Such astrophysical masers are known to originate in regions of hot and dense dust and gas. With the detection of water from MG J0414+0534, it is the first time such a dense gas cloud has been observed in the early universe, and it shows that the conditions for the water molecule to form and survive already existed only 2.5 billion years after the Big Bang.
Water masers have been found in a number of galaxies at closer distances. Typically, they are thought to arise in the hot gas and dust closely orbiting a super-massive black hole at the galaxy’s core. This amplified radio emission is more often observed when the orbiting disk is seen nearly edge-on. However, the astronomers say MG J0414+0534 is oriented with the disk almost face-on as seen from Earth. “This may mean that the water molecules in the masers we’re seeing are not in the disk, but in the super-fast jets of material being ejected by the gravitational power of the black hole,” said John McKean.
For the future, the detection of water in distant galaxies may still be challenging due to the sensitivity limitations of current-day telescopes. Of the nearby galaxies within half a billion light-years from Earth, only about one hundred galaxies show detectable water vapor emission, and almost all of them are relatively nearby. “In 2003, I was already participating in the detection of water mega-maser emission in the galaxy 3C 403,” said Christian Henkel, co-author of the study. At that time, it was the most distant galaxy where water had been detected. Later on, this record went to a galaxy with water emission at redshift 0.66, (light travel time of 6 billion years). “Now MG J0414+0534 at redshift 2.64 is by far the most distant galaxy to show water vapor emission,” he said.
“Because water masers arise close from the cores of galaxies, our result opens new interesting possibilities for studying super-massive black holes at a time when galaxies were forming,” said Violette Impellizzeri. “It will also generate further searches for water in other distant galaxies with the telescopes we have at our disposal today and with the next generation of radio telescopes; we now know water is out there.”
Researchers interpret asymmetry in early universe
The Big Bang is widely considered to have obliterated any trace of what came before. Now, astrophysicists at the California Institute of Technology (Caltech) think that their new theoretical interpretation of an imprint from the earliest stages of the universe may also shed light on what came before.
“It’s no longer completely crazy to ask what happened before the Big Bang,” said Marc Kamionkowski, Caltech’s Robinson Professor of Theoretical Physics and Astrophysics. Kamionkowski joined graduate student Adrienne Erickcek and senior research associate in physics Sean Carroll to propose a mathematical model explaining an anomaly in what is supposed to be a universe of uniformly distributed radiation and matter.
Their investigations turn on a phenomenon called inflation, first proposed in 1980, which posits that space expanded exponentially in the instant following the Big Bang. “Inflation starts the universe with a blank slate,” Erickcek said. The hiccup in inflation, however, is that the universe is not as uniform as the simplest form of the theory predicts it to be. Some parts of it are more intensely varied than others.
Until recently, measurements of the Cosmic Microwave Background (CMB) radiation, a form of electromagnetic radiation that permeated the universe 400,000 years after the Big Bang, were consistent with inflation — miniscule fluctuations in the CMB seemed to be the same everywhere. But a few years ago, some researchers, including a group led by Krzysztof Gorski of NASA’s Jet Propulsion Laboratory (JPL), which is managed by Caltech, scrutinized data from NASA’s Wilkinson Microwave Anisotropy Probe (WMAP). They discovered that the amplitude of fluctuations in the CMB is not the same in all directions.
“If your eyes measured radio frequency, you’d see the entire sky glowing. This is what WMAP sees,” Kamionkowksi said. WMAP depicts the CMB as an afterglow of light from shortly after the Big Bang that has decayed to microwave radiation as the universe expanded over the past 13.7 billion years. The probe also reveals more pronounced mottling — deviations from the average value — in the CMB in half of the sky than the other.
“It’s a certified anomaly,” Kamionkowski said. “But since inflation seems to do so well with everything else, it seems premature to discard the theory.” Instead, the team worked with the theory in their math addressing the asymmetry.
They started by testing whether the value of a single energy field thought to have driven inflation, called the inflaton, was different on one side of the universe than the other. It didn’t work. They found that if they changed the mean value of the inflaton, the mean temperature and amplitude of energy variations in space also changed. So they explored a second energy field, called the curvaton, which had been previously proposed to give rise to the fluctuations observed in the CMB. They introduced a perturbation to the curvaton field that turns out to affect only how temperature varies from point to point through space, while preserving its average value.
The new model predicts more cold than hot spots in the CMB, Kamionkowski said. Erickcek adds that this prediction will be tested by the Planck satellite, an international mission led by the European Space Agency with significant contributions from NASA, scheduled to launch in April 2009.
For Erickcek, the team’s findings hold the key to understanding more about inflation. “Inflation is a description of how the universe expanded,” she said. “Its predictions have been verified, but what drove it and how long did it last? This is a way to look at what happened during inflation, which has a lot of blanks waiting to be filled in.”
But the perturbation that the researchers introduced may also offer the first glimpse at what came before the Big Bang, because it could be an imprint inherited from the time before inflation. “All of that stuff is hidden by a veil, observationally,” Kamionkowski said. “If our model holds up, we may have a chance to see beyond this veil.”
Saturn moon Enceladus shows more signs of activity
The closer scientists look at Saturn’s small moon Enceladus, the more they find evidence of an active world. The most recent flybys of Enceladus made by NASA’s Cassini spacecraft provide new signs of ongoing changes on and around the moon. Details in the latest high-resolution images of Enceladus indicate that the south polar surface changes over time.
Close views of the southern polar region, where jets of water vapor and icy particles spew from vents within the moon’s distinctive “tiger stripe” fractures, provide surprising evidence of earthlike tectonics. They yield insight into what may be happening within the fractures. The latest data on the plume — the huge cloud of vapor and particles fed by the jets that extend into space — show it varies over time and has a far-reaching effect on Saturn’s magnetosphere.
“Of all the geologic provinces in the Saturn system that Cassini has explored, none has been more thrilling or carries greater implications than the region at the southernmost portion of Enceladus,” said Carolyn Porco, Cassini imaging team leader at the Space Science Institute in Boulder, Colorado.
A panel of Cassini scientists presented these new findings Monday in a news briefing at the American Geophysical Union’s Fall Meeting in San Francisco.
“Enceladus has earthlike spreading of the icy crust, but with an exotic difference — the spreading is almost all in one direction, like a conveyor belt,” said Paul Helfenstein, Cassini imaging associate at Cornell University in Ithaca, New York.
“Enceladus has asymmetric spreading on steroids,” Helfenstein said. “We are not certain about the geological mechanisms that control the spreading, but we see patterns of divergence and mountain-building similar to what we see on Earth, which suggests that subsurface heat and convection are involved.”
The tiger stripes are analogous to the mid-ocean ridges on Earth’s seafloor where volcanic material wells up and creates new crust. Using Cassini-based digital maps of the moon’s south polar region, Helfenstein reconstructed a possible history of the tiger stripes by working backward in time and progressively snipping away older and older sections of the map, each time finding that the remaining sections fit together like puzzle pieces.
Images from recent close flybys also have bolstered a theory that condensation from the jets erupting from the surface may create ice plugs that close off old vents and force new vents to open. The opening and clogging of vents also corresponds with measurements indicating the plume varies from month to month and year to year.
“We see no obvious distinguishing markings on the surface in the immediate vicinity of each jet source, which suggests that the vents may open and close and thus migrate up and down the fractures over time,” Porco said. “Over time, the particles that rain down onto the surface from the jets may form a continuous blanket of snow along a fracture.”
Enceladus’ output of ice and vapor dramatically impacts the entire Saturnian system by supplying the ring system with fresh material and loading ionized gas from water vapor into Saturn’s magnetosphere.
“The ions added to the magnetosphere are spun up from Enceladus’ orbital speed to the rotational speed of Saturn,” said Cassini magnetometer science team member Christopher Russell of the University of California, Los Angeles. “The more material is added by the plume, the harder this is for Saturn to do, and the longer it takes to accelerate the new material.”
With water vapor, organic compounds and excess heat emerging from Enceladus’ south polar terrain, scientists are intrigued by the possibility of a liquid-water-rich habitable zone beneath the moon’s south pole.
Dark energy found stifling growth in universe
For the first time, astronomers have clearly seen the effects of “dark energy” on the most massive collapsed objects in the universe using NASA’s Chandra X-ray Observatory. By tracking how dark energy has stifled the growth of galaxy clusters and combining this with previous studies, scientists have obtained the best clues yet about what dark energy is and what the destiny of the universe could be.
This work, which took years to complete, is separate from other methods of dark energy research such as supernovae. These new X-ray results provide a crucial independent test of dark energy, long sought by scientists, which depends on how gravity competes with accelerated expansion in the growth of cosmic structures. Techniques based on distance measurements, such as supernova work, do not have this special sensitivity.
Scientists think dark energy is a form of repulsive gravity that now dominates the universe, although they have no clear picture of what it actually is. Understanding the nature of dark energy is one of the biggest problems in science. Possibilities include the cosmological constant, which is equivalent to the energy of empty space. Other possibilities include a modification in general relativity on the largest scales, or a more general physical field.
To help decide between these options, a new way of looking at dark energy is required. It is accomplished by observing how cosmic acceleration affects the growth of galaxy clusters over time.
“This result could be described as ‘arrested development of the universe’,” said Alexey Vikhlinin of the Smithsonian Astrophysical Observatory in Cambridge, Massachusetts, who led the research. “Whatever is forcing the expansion of the universe to speed up is also forcing its development to slow down.”
Vikhlinin and his colleagues used Chandra to observe the hot gas in dozens of galaxy clusters, which are the largest collapsed objects in the universe. Some of these clusters are relatively close and others are more than halfway across the universe.
The results show the increase in mass of the galaxy clusters over time aligns with a universe dominated by dark energy. It is more difficult for objects like galaxy clusters to grow when space is stretched, as caused by dark energy. Vikhlinin and his team see this effect clearly in their data. The results are remarkably consistent with those from the distance measurements, revealing general relativity applies, as expected, on large scales.
“For years, scientists have wanted to start testing how gravity works on large scales and now, we finally have,” said William Forman, co-author of the study from the Smithsonian Astrophysical Observatory. “This is a test that general relativity could have failed.”
When combined with other clues — supernovae, the study of the cosmic microwave background, and the distribution of galaxies — this new X-ray result gives scientists the best insight to date on the properties of dark energy.
The study strengthens the evidence that dark energy is the cosmological constant. Although it is the leading candidate to explain dark energy, theoretical work suggests it should be about 10 raised to the power of 120 times larger than observed. Therefore, alternatives to general relativity, such as theories involving hidden dimensions, are being explored.
“Putting all of this data together gives us the strongest evidence yet that dark energy is the cosmological constant, or in other words, that ‘nothing weighs something’,” said Vikhlinin. “A lot more testing is needed, but so far Einstein’s theory is looking as good as ever.”
These results have consequences for predicting the ultimate fate of the universe. If dark energy is explained by the cosmological constant, the expansion of the universe will continue to accelerate, and the Milky Way and its neighbor galaxy, Andromeda, never will merge with the Virgo cluster. In that case, about a hundred billion years from now, all other galaxies ultimately would disappear from the Milky Way’s view and, eventually, the local superclusters of galaxies also would disintegrate.