There’s an awkward, irksome problem with our understanding of nature’s laws which physicists have been trying to explain for decades. It’s about electromagnetism, the law of how atoms and light interact, which explains everything from why you don’t fall through the floor to why the sky is blue.
Our theory of electromagnetism is arguably the best physical theory humans have ever made – but it has no answer for why electromagnetism is as strong as it is. Only experiments can tell you electromagnetism’s strength, which is measured by a number called α (aka alpha, or the fine-structure constant).
The American physicist Richard Feynman, who helped come up with the theory, called this “one of the greatest damn mysteries of physics” and urged physicists to “put this number up on their wall and worry about it”.
In research just published in Science, we decided to test whether α is the same in different places within our galaxy by studying stars that are almost identical twins of our Sun. If α is different in different places, it might help us find the ultimate theory, not just of electromagnetism, but of all nature’s laws together – the “theory of everything”.
We want to break our favorite theory
Physicists really want one thing: a situation where our current understanding of physics breaks down. New physics. A signal that cannot be explained by current theories. A sign-post for the theory of everything.
To find it, they might wait deep underground in a gold mine for particles of dark matter to collide with a special crystal. Or they might carefully tend the world’s best atomic clocks for years to see if they tell slightly different time. Or smash protons together at (nearly) the speed of light in the 27-km ring of the Large Hadron Collider.
The trouble is, it’s hard to know where to look. Our current theories can’t guide us.
Of course, we look in laboratories on Earth, where it’s easiest to search thoroughly and most precisely. But that’s a bit like the drunk only searching for his lost keys under a lamp-post when, actually, he might have lost them on the other side of the road, somewhere in a dark corner.