Under the stars
With the scope mounted, the first camera I decided to use was the SBIG STL-11000. I wanted to see how the scope handled a full-frame chip and to see if the focuser would handle the weight of this large camera. This camera’s detector is a standard 36x24 mm chip with 9-micrometer pixels. It provided an image scale of 5.35" per pixel, which yielded a huge field of view of 6° by 4°.
This setup can take in sweeping views of large objects. The scope’s advertised image circle is 42 mm, and the full-frame camera worked well with it. Once in focus, I used CCD Inspector to measure the collimation and curvature.
Collimation was spot on (within 1 pixel). Curvature measured 10 to 11 percent, a quite respectable number. My flat-field analysis shows light loss to be 8 to 9 percent in one corner and less in others. This means vignetting is minimal and probably due to a bit of tilt in the system with the large chip.
When I zoomed in to a full-size image, I noticed that the stars in the extreme corners of the chip were not perfectly round but slightly elongated. It wasn’t objectionable, however. Being right at the edge of the image circle, the optics did a decent job of providing good correction out to the edge of the field.
Also, as far as I could tell, the focuser did a good job holding this nearly 5-pound camera without sagging. With an adapter and a spacer on the camera, it threaded right onto the rear of the focuser. The camera-scope combination came to focus about 15 mm out from the fully racked-in point. The camera was easy to rotate to any desired angle. Because the focuser held this large camera well, it will have no issue holding other CCD cameras and DSLRs.
I also tested the scope with my QSI 583 camera, which uses an APS-C Kodak 8300 chip with a diameter of 22.5 mm and 5.4-micrometer pixels. This camera resulted in a image scale of 3.21" per pixel and a large field of view of 3° by 2°. With just the adapter threaded into the camera, this setup came to focus about 9 mm out. The first test images showed excellent correction all the way into the corners.
Curvature measured again around 10 to 11 percent, and a flat-field analysis showed light loss in the corners to be only around 4 percent. I saw no vignetting. With either camera, the focal length measured out at 349 mm, which is right on the money with the advertised 350 mm focal length.
From these initial tests, I concluded that excellent images are possible with either a full-frame or APS-C camera.