Radioactive decay of titanium powers supernova remnant

Thanks to observations by INTEGRAL, high-energy X-rays from radioactive titanium-44 in supernova remnant 1987A have been detected for the first time.
By | Published: October 19, 2012 | Last updated on May 18, 2023
SNR-1978A
Supernova remnant 1978A. // Credit: ESA/Hubble & NASA
The European Space Agency’s (ESA) INTEGRAL space observatory has made the first direct detection of radioactive titanium associated with supernova remnant 1987A. The radioactive decay likely has been powering the glowing remnant around the exploded star for the past 20 years.

Stars are like nuclear furnaces, continuously fusing hydrogen into helium in their cores. When stars greater than eight times the mass of our Sun exhaust their hydrogen fuel, the star collapses. This may generate temperatures high enough to create much heavier elements by fusion, such as titanium, iron, cobalt, and nickel. After the collapse, the star rebounds and a spectacular supernova explosion results, with these constituent elements flung into space.

Supernovae can shine as brightly as entire galaxies for a very brief time thanks to the enormous amount of energy released in the explosion.

After the initial flash has faded, the total luminosity of the remnant is provided by the release of energy from the natural decay of radioactive elements produced in the explosion. Each element emits energy at some characteristic wavelengths as it decays, providing insight into the chemical composition of the supernova ejecta — the shells of material flung out by the exploding star.

Supernova 1987A, located in one of the Milky Way’s nearby satellite galaxies, the Large Magellanic Cloud, was close enough to be seen with the naked eye when its light first reached Earth in February 1987. During the peak of the explosion, scientists detected fingerprints of elements from oxygen to calcium, representing the outer layers of the ejecta.

Soon after, astronomers could find signatures of the material synthesized in the inner layers in the radioactive decay of nickel-56 to cobalt-56, and its subsequent decay to iron-56.

Now, thanks to more than 1,000 hours of observation by INTEGRAL, high-energy X-rays from radioactive titanium-44 in supernova remnant 1987A have been detected for the first time.

“This is the first firm evidence of titanium-44 production in Supernova 1987A and in an amount sufficient to have powered the remnant over the last 20 years,” said Sergei Grebenev from the Space Research Institute of the Russian Academy of Science in Moscow.

From their analysis of the data, the astronomers estimated that the total mass of titanium-44 that must have been produced just after the core collapse of SN 1987A’s progenitor star amounted to 0.03 percent of the mass of our Sun. This value is near the upper boundary of theoretical predictions and is nearly twice the amount seen in supernova remnant Cas A, the only other remnant where titanium-44 has been detected.

“The high values of titanium-44 measured in Cas A and SNR1987A are likely produced in exceptional cases, favoring supernovae with an asymmetric geometry, and perhaps at the expense of the synthesis of heavier elements,” said Grebenev.

“This is a unique scientific result obtained by INTEGRAL that represents a new constraint to be taken into account in future simulations for supernova explosions,” said Chris Winkler, ESA’s INTEGRAL project scientist. “These observations are broadening our understanding of the processes involved during final stages of a massive star’s life.”