When a Sun-like star exhausts the helium fuel in its core, it enters its death throes. Starved for fuel, it swells to a red giant, likely swallowing its innermost planets, and begins burning scraps of leftover hydrogen to helium. Periodically, these helium ashes reignite, causing the star to once again burn brightly and throw off its outer layers into space.
This volatile phase of stellar life is called the asymptotic giant branch (AGB). With so much happening, it would seem like a terrible environment for the delicate process of forming planets. But over the past couple decades, astronomers have begun to suspect that under some circumstances, this stage could result in a new disk of material surrounding the star, giving rise to a second generation of planets.
Now, an analysis published Feb. 1 in Astronomy and Astrophysics gives some of the first observational hints that dying stars in binary systems could be giving birth to new planets. Roughly 10 percent of the post-AGB stars they studied are surrounded by disks of gas and dust that have gaps and cavities in them, a telltale sign that planets are possibly present — or forming — in them.
“It is amazing that they see similar disk structures to what we see in protoplanetary disks,” says Matthias Schreiber, an astronomer at the Universidad Tecnica Federico Santa Maria in Valparaiso, Chile, who was not involved in the work. It will take further work to determine whether the planets are first- or second-generation planets, he notes. “But this result alone is fantastic.”
Disk jockeying
The study analyzes archival observations of 85 post-AGB binary stars in the Milky Way Galaxy, all of which are surrounded by vast disks of material. For reasons astronomers don’t yet fully understand, some AGB stars with a binary companion star are able to exit the AGB phase quickly. The gravity of the second star allows some of the stellar material that blew off into space to swirl back in towards the pair of stars, forming a warm, glowing, rotating disk of gas and dust — similar to what happened when the stars were born. While the team didn’t image these disks directly, they could study them by looking at the radiation they give off in the infrared.