A tiny problem can have huge consequences for a space mission. Sometimes a huge endeavor hinges on the smallest detail — three seconds’ worth of fuel, an engineer’s stubbornness, a speck of paint, or a 1.3-millimeter calibration. When surprise glitches revealed themselves after launch, it took massive efforts to save the missions that gave us a closer look at Mercury, a tour of the outer solar system, our only glimpse of Titan’s surface, and an incredible view of the early universe. But even with hundreds of people putting in months of work, a few of these missions only succeeded by a razor-thin margin.
Mariner 10 Was Determined to Fail
Mariner 10 pretty much spent its whole mission trying to fail in increasingly creative ways, and its mission team back on Earth had to work constantly to keep the spacecraft on track.
About a month after launch, for no apparent reason, Mariner 10 irreversibly switched itself from main power to backup power, leaving the mission with no backup if the power system failed. Just in case that wasn’t stressful enough for the folks back home, one of the spacecraft’s computers developed a habit of resetting itself during preparations for roll maneuvers, which reset the onboard computer’s clock to zero. Mariner 10’s clock needed to be in sync with the one at Mission Control so mission planners could send the spacecraft commands from Earth; every time the clock reset, the mission team had to reset their clocks and completely re-plan the sequence of commands — which meant rewriting and checking several pages of code.
And the spacecraft’s state-of-the-art navigational system kept trying to chase stray flecks of paint. The reflective white paint that helped protect the high-gain antenna and solar panels from overheating tended to flake, sending bright white specks across the star tracker’s field of view every time the solar panels or antenna moved. During maneuvers, the tracker might get confused and follow the paint speck instead of the star Canopus, which it was supposed to use as a navigational guide. A safety program automatically rolled the spacecraft until it caught sight of the star again, but every roll cost precious attitude-control gas.
In January 1974, the team realized that attitude-control gas was going to be a serious problem. When the solar panels and the gyros moved at the same time — during any kind of trajectory correction, for instance — they set off an oscillation that caused the attitude-control system to use a lot of gas for corrections, in addition to the fuel Mariner 10 wasted every time it rolled to chase a paint fleck. As Mariner 10 left Venus behind, mission director Donna Shirley and her team realized they had to find a way to complete the upcoming trajectory correction maneuver without using the gyros.
They found a way to tilt the solar panels so that pressure from the solar wind would help keep the spacecraft properly oriented, but by its third encounter with Mercury, Mariner 10 had almost no attitude-control gas left. That almost doomed the mission at the last minute. When the team tried to orient for approach using the solar sailing method, the spacecraft ended up rolling into an awkward attitude that left its radio antenna pointed the wrong direction to send home data or receive new commands. The German Helios mission saved the day by giving up its time on the Deep Space Network (just at the peak of its most important data collection) so the Mariner 10 team could use the powerful antennas to get the spacecraft oriented properly.
And then everybody held their breath, waiting to see if, after all those months of struggling, Mariner 10 would end its mission by crashing into Mercury at the last moment. Nobody had a very accurate estimate of Mercury’s mass in 1974, so it was nearly impossible to precisely predict the gravity that would be tugging the spacecraft downward on its final close pass. As the spacecraft approached, the mission’s simulation predicted a crash — but in the end, Mariner 10 skimmed past Mercury just 190 miles above its rocky surface.
Mariner 10 finally ran out of attitude-control gas just eight days after that final flyby. The team turned off the spacecraft’s radio transmitter and left it to orbit the Sun and think about what it had done — which was quite a lot, in the end. It sent home the first close images of Mercury and Venus and pioneered the gravitational slingshot method later used by Voyager, Cassini, Galileo, and other missions.
“It was ultimately a very successful mission; the spacecraft just broke all the time,” Shirley wrote in her book Managing Martians.