Key examples of the influence of Milankovitch climate forcing in the past are the occurrence of extreme cold or warm periods, as well as wetter or dryer regional climate conditions.
These climate changes have significantly altered the conditions at Earth’s surface, such as the size of lakes. They are the explanation for the periodic greening of the Saharan desert and low levels of oxygen in the deep ocean. Milankovitch cycles have also influenced the migration and evolution of flora and fauna including our own species.
And the signatures of these changes can be read through cyclical changes in sedimentary rocks.
Recorded wobbles
The distance between Earth and the Moon is directly related to the frequency of one of the Milankovitch cycles — the climatic precession cycle. This cycle arises from the precessional motion (wobble) or changing orientation of Earth’s spin axis over time. This cycle currently has a duration of approximately 21,000 years, but this period would have been shorter in the past when the Moon was closer to Earth.
This means that if we can first find Milankovitch cycles in old sediments and then find a signal of Earth’s wobble and establish its period, we can estimate the distance between Earth and the Moon at the time the sediments were deposited.
Our previous research showed that Milankovitch cycles may be preserved in an ancient banded iron formation in South Africa, thus supporting Trendall’s theory.
The banded iron formations in Australia were probably deposited in the same ocean as the South African rocks, around 2.5 billion years ago. However, the cyclic variations in the Australian rocks are better exposed, allowing us to study the variations at much higher resolution.
Our analysis of the Australian banded iron formation showed that the rocks contained multiple scales of cyclical variations which approximately repeat at 10 and 85 cm intervals. On combining these thicknesses with the rate at which the sediments were deposited, we found that these cyclical variations occurred approximately every 11,000 years and 100,000 years.
Therefore, our analysis suggested that the 11,000 cycle observed in the rocks is likely related to the climatic precession cycle, having a much shorter period than the current ~21,000 years. We then used this precession signal to calculate the distance between Earth and the Moon 2.46 billion years ago.