We did consider other possible processes that could have formed such a crater, such as the collapse of a submarine volcano or a pillar (or diapir) of salt below the seabed. An explosive release of gas from below the surface could also be a cause. But none of these possibilities are consistent with the local geology or the geometry of the crater.
Earthquakes, airblast, fireball and tsunamis
After identifying and characterizing the crater, we built computer models of an impact event to see if we could replicate the crater and characterize the asteroid and its impact.
The simulation that best fits the crater shape is for an asteroid 0.25 miles (400 meters) in diameter hitting an ocean that was 0.5 miles (800 meters) deep. The consequences of an impact in the ocean at such water depths are dramatic. It would result in a half-mile 800-meter thick water column, as well as the asteroid and a substantial volume of sediment being instantly vaporized – with a large fireball visible hundreds of kilometers away.
Shock waves from the impact would be equivalent to a magnitude 6.5 or 7 earthquake, which would likely trigger underwater landslides around the region. A train of tsunami waves would form.
The air blast from the explosion would be larger than anything heard on Earth in recorded history. The energy released would be approximately a thousand times larger than that from the recent Tonga eruption. It is also possible that the pressure waves in the atmosphere would further amplify the tsunami waves far away from the crater.
Chicxulub relative?
One of the most intriguing aspects of this crater is that it is the same age as the giant Chicxulub event, give or take one million years, at the boundary between the Cretaceous and Paleogene periods 66 million years ago. Again, if this really is an impact crater, might there be some relationship between them?
We have three ideas as to their possible relationship. The first is that they might have formed from the break-up of a parent asteroid, with the larger fragment resulting in the Chicxulub event and a smaller fragment (the “little sister”) forming the Nadir crater. If so, the damaging effects of the Chicxulub impact could have been added to by the Nadir impact, exacerbating the severity of the mass extinction event.
The break-up event could have formed by an earlier near-collision, when the asteroid or comet passed close enough to Earth to experience gravitational forces strong enough to pull it apart. The actual collision could then have occurred on a subsequent orbit.
Although, this is less likely for a rocky asteroid, this pull-apart is exactly what happened to the Shoemaker-Levy 9 comet that collided with Jupiter back in 1994, where multiple comet fragments collided with the planet over the course of several days.
Another possibility is that Nadir was part of a longer lived “impact cluster”, formed by a collision in the asteroid belt earlier in solar system history. This is known as the “little cousin” hypothesis.
This collision may have sent a shower of asteroids into the inner solar system, which may have collided with the Earth and other inner planets over a more extended time period, perhaps a million years or more. We have a precedent for such an event back in the Ordovician period – over 400 million years ago – when there were numerous impact events in a short period of time.