Once the sun shield was open, our team began monitoring the temperatures of the four cameras and spectrometers onboard, waiting for them to reach temperatures low enough so that we could start testing each of the 17 different modes in which the instruments can operate.
2. What did you test first?
The cameras on Webb cooled just as the engineers predicted, and the first instrument the team turned on was the Near Infrared Camera – or NIRCam. NIRCam is designed to study the faint infrared light produced by the oldest stars or galaxies in the universe. But before it could do that, NIRCam had to help align the 18 individual segments of Webb’s mirror.
Once NIRCam cooled to minus 280 F, it was cold enough to start detecting light reflecting off of Webb’s mirror segments and produce the telescope’s first images. The NIRCam team was ecstatic when the first light image arrived. We were in business!
These images showed that the mirror segments were all pointing at a relatively small area of the sky, and the alignment was much better than the worst-case scenarios we had planned for.
Webb’s Fine Guidance Sensor also went into operation at this time. This sensor helps keep the telescope pointing steadily at a target – much like image stabilization in consumer digital cameras. Using the star HD84800 as a reference point, my colleagues on the NIRCam team helped dial in the alignment of the mirror segments until it was virtually perfect, far better than the minimum required for a successful mission.
3. What sensors came alive next?
As the mirror alignment wrapped up on March 11, the Near Infrared Spectrograph – NIRSpec – and the Near Infrared Imager and Slitless Spectrograph – NIRISS – finished cooling and joined the party.
NIRSpec is designed to measure the strength of different wavelengths of light coming from a target. This information can reveal the composition and temperature of distant stars and galaxies. NIRSpec does this by looking at its target object through a slit that keeps other light out.
NIRSpec has multiple slits that allow it to look at 100 objects at once. Team members began by testing the multiple targets mode, commanding the slits to open and close, and they confirmed that the slits were responding correctly to commands. Future steps will measure exactly where the slits are pointing and check that multiple targets can be observed simultaneously.
NIRISS is a slitless spectrograph that will also break light into its different wavelengths, but it is better at observing all the objects in a field, not just ones on slits. It has several modes, including two that are designed specifically for studying exoplanets particularly close to their parent stars.
So far, the instrument checks and calibrations have been proceeding smoothly, and the results show that both NIRSpec and NIRISS will deliver even better data than engineers predicted before launch.