Scientific discoveries have also come from the real-time detection alerts. Most notable has been the possible discovery of light from two colliding black holes reported by the Zwicky Transient Facility (ZTF) at Caltech, the first time such a detection has been claimed. Black holes are famously so dense that light cannot escape them, and the merger of two black holes is not expected to give off any light in normal circumstances either. In this case, however, a flash of light observed by ZTF is argued by the team to correspond with a GW event on May 21, 2019, when two black holes merged. The angular momentum from the merger itself, researchers argue, would have led to an interaction with surrounding gas. It is this interaction that could have, in turn, given off the sudden flash they observed.
Beyond individual events, however, a catalog of black hole detections is invaluable for testing our understanding of physics itself. Each part of a GW detection is made of several components, including the inspiral of the two objects, the collision itself and the reverberating aftershock of the merger. The extreme physics during these moments provide a new hotbed for testing theories relating to gravity, ranging from general relativity to mysterious dark energy driving the expansion of the universe. “In terms of the theoretical interpretation, these are really early days,” explains London. “Some of the tests are really rudimentary.” Once the sample of events grows larger and the signatures are better understood, however, scientists can use statistics to probe physics in entirely new ways.
Unfortunately, the O3 run was cut short in March 2020 by the coronavirus pandemic. GW scientists are confident, however, that the next run, O4, will be even more exciting when it begins in December 2022. Not only will they peer further into space than before, but in 2020, a new GW detector, the Kamioka Gravitational Wave Detector (KAGRA), came online in Japan. Working in tandem with the LIGO and Virgo instruments, KAGRA will allow for even more precise estimates for where the GWs originate from. Looking even further ahead, LIGO-India is currently in the works and slated to begin observations in 2026. When it does, the ability to pinpoint where a gravitational wave came from in the sky will be significantly better than where they are now. This will allow astronomers to identify the locations of cosmic collisions better than ever before.
“We are opening the zoo of astrophysically formed black holes,” observes Nissanke, “and it’s exciting to see what’s out there.”
This story was originally published in the July/August 2022 issue of Discover magazine, Astronomy
magazine's sister publication, as "Waves of Discovery." Click here to subscribe to read more stories like this one.