At the center of the Milky Way sits a dark and dangerous beast: Sagittarius A*. Located about 26,000 light-years from Earth, our galaxy’s only known supermassive black hole is roughly 4 million times as massive as the Sun, and its immense gravitational pull can nonchalantly annihilate any object that strays too close. Fortunately for us, Sagittarius A* is like a troll under a bridge — it does not leave its post.
This tends to be the case for most supermassive black holes (SMBHs) found throughout the universe. However, sometimes a SMBH can be forced from the center of its host galaxy, particularly if it’s involved in a galactic merger with a bigger counterpart. For example, if a small galaxy merges with a larger one, the smaller galaxy’s SMBH will likely be thrown into a wide orbit around the newly formed galaxy, therefore becoming a ‘wandering’ supermassive black hole. Though astronomers have
previously found evidence of these nomadic SMBHs on the outskirts of other galaxies, their overall prevalence is still largely unknown.
But according to a
new study published April 24 in The Astrophysical Journal Letters, wandering supermassive black holes may be quite common (and even observable) within many different types of galaxies — including the Milky Way.
To carry out the study, the researchers took advantage of a new, state-of-the-art cosmological simulation called
ROMULUS25. This
N-body simulation uses an advanced supercomputer called
Blue Waters to model how billions of individual particles interact and evolve over time. Though the ROMULUS25 simulation encompasses an astounding volume of over 15,000 cubic Megaparsecs (1 Megaparsec = 3 million light-years), it is still able to resolve the internal structure of galaxies and dwarf galaxies, as well as capture the orbital evolution of SMBHs following galactic mergers.