In a
new study published February 8 in
The Astrophysical Journal, an international team of astronomers announced the discovery of the most distant supernova ever confirmed by spectroscopic measurements. Located some 10.5 billion light-years from Earth, this massive star exploded when the universe was just a quarter of its current age of 13.8 billion years.
The supernova, dubbed DES16C2nm, was first detected back in August 2016 by the
Dark Energy Survey, which is currently mapping several hundred million galaxies in order to learn more about the mysterious force known as dark energy. The distance and overall brightness of DES16C2nm was later confirmed in October 2017 using three of the world’s most powerful telescopes: the Very Large Telescope in Chile, The Magellan telescope also in Chile, and the Keck Observatory in Hawaii.
A supernova explosion occurs when a massive star runs out of fuel and collapses in on itself due to the pull of gravity. If the star is not massive enough to form a black hole (less than around 20 solar masses), then its collapsing core eventually rebounds off itself and bursts outward in what we see as a supernova.
DES16C2nm is a member of a rare breed of supernovae known as
superluminous supernovae (SLSN). These blindingly bright explosions make up the rarest and most luminous class of supernovae, and researchers first discovered them just 10 short years ago. Astronomers think that SLSN, which can outshine even the brightest galaxies, are formed when material falls onto the densest objects in the universe (besides black holes) — neutron stars.
“What we think could be happening here is that the stellar explosion produces a magnetar at its core: a rapidly spinning neutron star with a magnetic field 100 trillion times stronger than that on Earth,” said Chris D’Andrea, co-author and postdoctoral fellow at the University of Pennsylvania, in a
press release. “If we look at how the light from the superluminous supernova evolves in time, it matches very well models of the amount of energy that magnetars emit as they spin. This energy is hitting the winds of the ejected material from the stellar explosion and dramatically brightening what we’re seeing.”