Finally, scientists need to study various ways to deflect an incoming asteroidfrom its path and save the planet, according to the report. This could take many forms: ramming a spacecraft into the asteroid, breaking it up with nuclear bombs, detonating explosives nearby to partially vaporize it and let the gases push it off course, or even painting parts of it black or white to allow the sun’s light to push it in a different direction.
Getting some practice is also part of the plan: The working group recommended conducting missions to asteroids to test technologies that would enable asteroid herding. This includes a nimble propulsion system, onboard artificial intelligence and monitoring systems for up-to-date assessments of the asteroid.
We’ve already gotten a head-start. In addition to several asteroid rendezvous over the past two decades or so, the OSIRIS-REx mission, launched in September 2016, will make contact with with the asteroid Bennu in August 2018. The goal is to collect samples from Bennu and return them to Earth, a mission that will also test some of the protocols necessary for an asteroid-deflection mission, should it ever become necessary.
Detection Is the key
But before we get into the deflection business, we need a target. This is why Lu and others are pushing for better detection capabilities now. It could take more than a decade to fully design and equip a mission to coax an asteroid off its path toward Earth, so early warning will be key.
Lu says that projects of this sort need to be viewed as more than just scientific missions, which has often doomed them to funding shortfalls.
“It should not be judged in a pure science competition against other scientific missions with the criteria being how much novel new science you are doing,” he says. “This is really something that is not just science, but it’s really about protecting life.”
The money involved would barely make a dent in NASA’s budget, to say nothing of larger agencies like the Department of Defense.
“We’re talking half a percent of the budget of a small agency like NASA,” Lu says.
The problem may lie in the way that we as humans assess risk. We seem to have a tough time grappling with the consequences of events that we haven’t personally experienced, and sometimes fail to take the necessary precautions. The 2011 Fukushima disaster and the failure of the levees after Hurricane Katrina are prime examples.
“It’s not as small as you think, it’s just that it’s longer than a generation,” Lu says. “If it didn’t happen in your lifetime, you naturally discount it.”
This article originally appeared on Discover.