1. The Glass Storm of HD 189733b
If you want howling winds and driving rain, the ultimate place to be is 63 light years away on the gas giant HD 189733b. It’s the nearest hot Jupiter that transits between Earth and its star, giving astronomers a good look at its atmosphere, and what they’ve seen is the weirdest space storm yet: droplets of molten glass driven by a scorching supersonic wind.
Spectral imaging shows that besides free oxygen and hydrogen, HD 189733b’s atmosphere is a mixture water vapor, methane, and, on the day side, some carbon monoxide. But high up in the cloud-tops, magnesium silicate condenses into molten glass raindrops, which scatter blue and give the planet its lovely deep blue coloring.
If that wasn’t bizarre enough, these glass raindrops are hurled around the planet by a supersonic gale as they fall. Astronomers aren’t sure exactly how fast the wind on this distant gas giant actually blows, but it’s at least 4,500 MPH, according to Spitzer Space Telescope observations and mathematical models. HD 189733b’s glass-filled gale may even be supersonic, even on a world where the sound barrier, at 6,700 MPH, is ten times faster than that on Earth. That means the wind-driven glass rain gets whisked around the planet faster than the planet actually rotates, at 4,500 MPH. That’s pretty unusual; by comparison, the winds of Jupiter’s storms top out at around 340 MPH on a world that spins on its axis at 27,000 MPH.
Why is the wind so fast? Air moves from warmer areas to colder areas, and one side of HD 189733b is much hotter than the other. It’s tidally locked to its star, which creates a permanently heated day side and a night side permanently exposed to the cold of space. The night side of HD 189733b averages about 1200°F, which is still really hot, but quite a bit cooler than the day side. And in fact, that difference would be much more pronounced without the supersonic wind to help spread the heat around and even out global temperatures.
The result is a hot, glass-laden gale, roaring into the darkness on the far side of the planet.