The energy from that fast rotation is the engine that powers the supernova. “As it slows down, and it rotates slower and slower and slower, what's happening is that it's shedding its rotatational energy,” explained coauthor Todd Thompson of Ohio State University. “It's flying out in this big energized wind that then shocks the supernova and makes it extra bright for us.”
To produce a supernova as bright as ASASSN-15lh, nearly all of the the magnetar’s energy has to be converted into light. That kind of efficiency is technically possible but very rare, and it pushes the limits of how magnetars, as we know them, work.
“You have to take a very fast-spinning magnetar and then extract all the energy from it to power what we have been seeing in this case,” says coauthor Kris Stanek, also of Ohio State University.
The team says it’s an extreme scenario that’s right on the edge of what physicists consider possible for a magnetar, but they also say it’s the most plausible explanation for ASASSN-15lh’s unprecedented brightness.
An Unusual Star
The star that exploded to produce ASASSN-15lh would have been a massive, blue, hot star, rotating rapidly. It must have shed its outer layers of hydrogen and helium shortly before it died, because those elements are absent from the supernova. Several telescopes around the world have studied the supernova’s spectrum, the presence or absence of different wavelengths of light, which can tell physicists which elements are present in the gas cloud.
It may have been a type of massive star called a Wolf-Rayet star, although astronomers can’t yet say for sure. “They’re stars that have no hydrogen or helium, and many of them are rapidly rotating, they are called Wolf-Rayet stars. I would say it's not impossible that it is somehow related to those type of stars, because we see those type of stars around, and they meet the qualifications that I just gave you: rare, no hydrogen or helium, massive, and at least a fraction of them are rapidly rotating.”
A Collaborative Project
Because ASASSN-15lh is between 3.8 and 4 billion light years away, observers here on Earth are seeing the ghost of an explosion that happened billions of years ago, while our planet was still in the process of cooling.
The light from that distant, long-ago explosion reached Earth in June of 2015, where it was first noticed by a pair of telescopes in Chile, part of the All-Sky Automated Survey for SuperNovae, or ASAS-SN, rather menacingly pronounced “assassin.” ASASSN-15lh is one of 180 supernovae discovered by ASAS-SN in 2015, and one of 270 discovered by the project since its start two years ago.
“This particular story is an extreme example of something, and I'm very happy that we have found it,” says Stanek. “People have been studying supernovae for many decades now, and our project is just two years old, and yet, during these two years, we were able to find that object, which is challenging to everybody who is working on supernovae.”