Yet black holes are scarce because matter normally does not voluntarily pack itself so firmly. The simplest mechanism involves obese stars — those more than 3½ times heavier than the Sun — going through a late-life crisis. When their nuclear furnaces no longer emit enough outward-pushing energy, such stars cannot resist the gravitational urge to collapse. The smaller they get, the smaller they want to be, until their gravitational escape velocity reaches 186,282 miles (299,792km) per second. Light itself, then, cannot leave, and the stars effectively disappear.
In a way, nothing really changes at that instant. Such a star continues shrinking, unaware that the outside world now calls it a black hole. Cygnus X-1’s singularity — the collapsed star at its center — achieved black hole density when it became 3.7 miles (6.0km) wide. Yet the star shriveled still further, to the size of a beach ball, and then an apple seed. It continued to collapse until it occupied zero volume and achieved infinite density. Well, maybe. Our laws of science cannot deal with this, and some theorists think an unknown process halts the collapse. No one knows.
If the star rotates, certain angles of approach permit hypothetical paths into other places or times. Enter exactly the right way, and you’re suddenly at the senior prom on the planet Maltese.
Surrounding the singularity is the “event horizon,” an invisible no-trespassing zone, which in Cygnus X-1’s case is 16 miles (26km) away. Step across it, and you’re doomed. When we detect this black hole’s X-rays, we hear the final frantic yelps coming to us from the visible star’s stellar wind particles caught spiraling in the accretion disk — on their way to the unknown.