Mike Brown talks about Sedna On March 15, 2004, astronomers Mike Brown of Caltech, Chad Trujillo of Gemini Observatory, and David Rabinowitz of Yale University announced the discovery of the coldest, most distant object known to orbit the Sun. The team again returned its attention to Sedna in early September 2004, just as the frigid worldlet was becoming available to the Keck telescopes in Hawaii a few hours before night's end.
Sedna's updated orbit |
Period: | 11,500 years |
Closest to Sun: | 76 AU |
Farthest from Sun: | 943 AU |
Semimajor axis: | 509 AU |
Inclination: | 11.93° |
These values differ somewhat from those originally announced. Mike Brown notes that Sedna's aphelion and semimajor axis are known to within about 10 percent and may still change slightly with additional observations. He says the most significant change to Sedna's orbital parameters came when prediscovery images of the object were included in the computation. |
One Sedna mystery Brown would like to solve soon is "that whole, crazy, 40-day rotation thing." Back in March, he announced a possible rotation period of 40 days, and his team speculated Sedna rotated so slowly because it had a moon. Available data are consistent with a rotation of both 20 and 40 days. "We won't know the real answer until a few 20- or 40-day periods have passed," Brown says. "It's very difficult to get data spanning that length of time," he says, because his project has to compete with others for telescope time.
Asteroids typically rotate in a range from a few hours to a few days. While astronomers are less sure about the full range of rotation in Kuiper Belt objects, these bodies also seem to spin in less than a few days' time. With a 20- or 40-day spin, Brown argues, Sedna is practically at a standstill. While it's possible the last impact to occur on Sedna struck in just the right way to nearly cancel its asteroid-like spin, the odds of such a perfect hit are extremely low.
How big is Sedna? "We have upper limits now from the [Hubble] Space Telescope, which didn't resolve the disk, and from the Spitzer telescope, which didn't detect Sedna's thermal emission," Brown says. "Both of those limits are consistent with a size of about three-quarters that of Pluto." Another argument also puts Sedna in the same size range. If Sedna reflected all the sunlight falling on it, calculations show, it would be about 1,120 miles (1,800 kilometers) across. Yet nothing in the outer solar system reflects more than 20 percent of incident light, which brings the size down to 75 percent that of Pluto, or a little over 1,000 miles (1,610 km). Brown and his colleagues are trying to obtain new observations to constrain the size still further.
Brown's group has initiated new programs fine-tuned to locate objects moving through the sky at a Sedna-like pace. "Almost all of the searches for Kuiper Belt objects that are currently taking place stop at about 100 AU. And the reason is that, as things get farther and farther away, their motions in the sky are slower and slower," he notes. An object moving slower than a couple of arcseconds an hour will evade detection. So, the team's new programs look exclusively for such slow-moving objects, like Sedna. "We are quite excited to see if we can find things that are moving much more slowly than that."
Finding such a population, he argues, is where the biggest scientific payoff is going to be. Objects like Sedna appear to be in a special place in the solar system, held to the Sun more strongly than the distant comets of the Oort Cloud but more loosely than the planets. Simulations show that placing Sedna in its orbit without disrupting the comet cloud requires unusual circumstances, such as the close passage of a Sun-like star early in the solar system's history.
"When we find, you know, tens or dozens of objects like Sedna on orbits like Sedna's, we will be able to quite definitively read this fossil record and tell you almost exactly what happened 4.5 billion years ago," he says. "You just don't get those opportunities very frequently."
To hear Brown speak of it, Sedna and its companions are a fossil record of circumstances at the solar system's birth. But this scenario won't hold if a distant, unknown planet affects Sedna and its relatives the way Neptune scatters Kuiper Belt objects. Still, Brown thinks such an object is increasingly unlikely.
"If you had asked me 2, 3 years ago, I would have said, 'Not only is that high on the list, but I'm going to bet that's the most likely thing.' But we've spent the last 3 years diligently searching the outer solar system, and we've covered a lot of territory," Brown explains. "Nothing like that has shown up yet. There's always room to hide things, but the hiding places are getting smaller and smaller."
What's the most personally satisfying aspect of discovering Sedna? Says Brown: "The high points are the letters from the kids. There's no comparison. … I have a pile of mail I'm
still going through from school kids."
Learn more about Sedna at Mike Brown's web site