Tonight's Sky
Sun
Sun
Moon
Moon
Mercury
Mercury
Venus
Venus
Mars
Mars
Jupiter
Jupiter
Saturn
Saturn

Tonight's Sky — Change location

OR

Searching...

Tonight's Sky — Select location

Tonight's Sky — Enter coordinates

° '
° '

Oceans in Mars' past?

Scientists believe changes in Mars' orientation manipulated the Red Planet's shorelines within the past 2 to 3 billion years.
Provided by the Carnegie Institution, Washington, D.C.
Mars' spin axis
The colors illustrate differences in elevation on Mars' surface, with the ancient rotation poles indicated (the north polar cap at center shows the location of the present-day pole). Through a phenomenon called true polar wander, Mars' spin axis and poles might have shifted by nearly 3,000 kilometers along the surface sometime within the past 2 or 3 billion years. As this shift occurred, surface topography of the shorelines deformed because spinning planets bulge at their equator.
Taylor Perron/UC Berkeley
June 14, 2007
Scientists have found new evidence to support the presence of large oceans on Mars in the past. Published in the June 14 issue of Nature, the research suggests that changes in Mars' orientation with respect to its axis might be responsible for large variations in the topography of shoreline-like features on the planet. Scientists have studied these features for more than 30 years, and the current study presents a new, alternative explanation for how they formed.

Geophysicists have discovered that irregularities in proposed Martian shorelines might be explained by surface deformation from "true polar wander." Through this phenomenon, Mars' spin axis and poles shifted by nearly 3,000 kilometers along the surface sometime within the past 2 or 3 billion years. Spinning planets bulge at their equator and solid surfaces deform differently than liquid sea surfaces. As a result, surface topography of the shorelines deformed as the planet's rotation axis shifted.

In the 1990s, NASA's Mars Global Surveyor spacecraft mapped the Martian topography and found that ancient shorelines aged between 2 and 4 billion years, known as Deuteronilus and Arabia, vary in elevation by about a half of a mile and more than a mile and a half, respectively. In contrast, changes in shoreline elevation on Earth are much gentler, leading many experts to argue against their connection to past oceans on Mars.

"A similar scenario to what we are proposing on Mars has been used to explain sea level variations — deformed shorelines — over geologic time scales of 1-100 million years on Earth," said study coauthor Isamu Matsuyama of Carnegie's Department of Terrestrial Magnetism. "But the deformations along Deuteronilus and Arabia are quite dramatic, so the connection has not been as easy to make. We believe this work significantly strengthens the case for large Martian oceans in the ancient past." Matsuyama developed models for true polar wander driven by internal and surface processes on Mars.

The team proposes that true polar wander combined with the presence of vast oceans could in fact account for the striking deformation of the Deuteronilus and Arabia shorelines on Mars.

"When the spin axis moves relative to the surface, the surface deforms, and that is recorded in the shoreline," said coauthor Michael Manga, professor of earth and planetary science at UC Berkeley.

Any major shift of planetary mass — on the surface, within the mantle, even an impact from outer space — could cause a shift of the rotation axis because a spinning body is most stable with its mass farthest from its spin axis. Accordingly, the Tharsis rise, the planet's biggest feature, is situated at the equator between both today's poles and the two ancient poles.

The question remains: What caused Mars' rotation axis to move relative to the crust"

Manga has a hunch about the mass shift that precipitated the tilt of Mars' rotation axis. If a flood of water had filled the Arabia ocean about 3 billion years ago, to a depth some have calculated at 700 meters, that mass at the pole might have been enough to shift the pole 50 degrees to the south. Once the water disappeared, the pole could have shifted back, then shifted again by 20 degrees during the deluge that created the Deuteronilus shoreline.
0

JOIN THE DISCUSSION

Read and share your comments on this article
Comment on this article
Want to leave a comment?
Only registered members of Astronomy.com are allowed to comment on this article. Registration is FREE and only takes a couple minutes.

Login or Register now.
0 comments
ADVERTISEMENT

FREE EMAIL NEWSLETTER

Receive news, sky-event information, observing tips, and more from Astronomy's weekly email newsletter.

ADVERTISEMENT
ADVERTISEMENT
BoxProductcovernov

Click here to receive a FREE e-Guide exclusively from Astronomy magazine.

Find us on Facebook

Loading...