Tonight's Sky
Sun
Sun
Moon
Moon
Mercury
Mercury
Venus
Venus
Mars
Mars
Jupiter
Jupiter
Saturn
Saturn

Tonight's Sky — Change location

OR

Searching...

Tonight's Sky — Select location

Tonight's Sky — Enter coordinates

° '
° '

NASA Moon mission completes thermal vacuum testing

The orbiter was subjected to the extreme temperature cycles of the lunar environment as engineers conducted simulated flight operations.
Provided by Goddard Space Flight Center, Greenbelt, Maryland
The Lunar Reconnaissance Orbiter will map the lunar surface in preparation for human missions to the Moon. It is scheduled to launch in early 2009.
NASA
December 22, 2008
NASA's Lunar Reconnaissance Orbiter (LRO) successfully completed thermal vacuum testing, which simulates the extreme hot, cold, and airless conditions of space that LRO will experience after launch. This milestone concludes the orbiter's environmental test program at NASA's Goddard Space Flight Center in Greenbelt, Maryland.

The orbiter will carry seven instruments to provide scientists with detailed maps of the lunar surface and increase our understanding of the Moon's topography, lighting conditions, mineralogical composition, and natural resources. NASA will use LRO data to select safe landing sites, determine locations for future outposts, and help mitigate radiation dangers to astronauts. The spacecraft will spend at least a year in a low polar orbit approximately 30 miles (48 kilometers) above the lunar surface while the instruments work together to collect detailed information about the Moon's environment.

The thermal vacuum testing on the spacecraft took about 2 months. The orbiter, which was built at Goddard, was subjected to the extreme temperature cycles of the lunar environment as engineers conducted simulated flight operations.

"We have cooked LRO, frozen it, shaken it, and blasted it with electromagnetic waves, and still it operates," said Dave Everett, LRO mission system engineer at Goddard. "We have performed more than 2,500 hours of powered testing since January, more than 600 of that in vacuum."

The first two checks were the spin and vibration tests. The spin test determined the spacecraft's center of gravity and measured characteristics of its rotation. During vibration testing, engineers checked the structural integrity of the spacecraft aboard a large shaking table that simulated the rigorous ride the orbiter will encounter during liftoff aboard an Atlas rocket.

Next, the orbiter was subjected to acoustics testing. The bagged spacecraft was placed near wall-sized speakers that simulate the noise-induced vibrations of launch. Following acoustics testing, LRO underwent tests that simulated the orbiter's separation from the rocket during launch. The spacecraft also underwent electromagnetic compatibility testing to ensure internal and external electrical signals do not interfere with its critical functions.

"It was less than 1 year ago that LRO was a myriad collection of parts not yet delivered to our clean room," said Craig Tooley, LRO project manager at Goddard. "This truly is a significant accomplishment - a hard earned milestone. It is a humbling and awe-inspiring experience to work with the LRO team."

NASA will ship LRO to Kennedy Space Center in Florida in early 2009 to complete preparations for its April 24 launch aboard an Atlas V rocket. Accompanying the spacecraft will be the Lunar Crater Observation and Sensing Satellite, a mission that will impact the Moon's surface in its search for water ice.
0

JOIN THE DISCUSSION

Read and share your comments on this article
Comment on this article
Want to leave a comment?
Only registered members of Astronomy.com are allowed to comment on this article. Registration is FREE and only takes a couple minutes.

Login or Register now.
0 comments
ADVERTISEMENT

FREE EMAIL NEWSLETTER

Receive news, sky-event information, observing tips, and more from Astronomy's weekly email newsletter.

ADVERTISEMENT
ADVERTISEMENT
BoxProductcovernov

Click here to receive a FREE e-Guide exclusively from Astronomy magazine.

Find us on Facebook

Loading...